Finding Hidden Communities in Complex Networks from Chaotic Time Series
نویسندگان
چکیده
منابع مشابه
Finding Hidden Communities in Complex Networks from Chaotic Time Series
Recent works show that complex network theory may be another powerful tool in time series analysis. In this paper, we construct complex networks from the chaotic time series with Maximal Information Coefficient (MIC). Each vector point in the reconstructed phase space is represented by a single vertex and edge determined by MIC. By using the Chua’s circuit system, we illustrate the potential of...
متن کاملDetecting hidden nodes in complex networks from time series.
We develop a general method to detect hidden nodes in complex networks, using only time series from nodes that are accessible to external observation. Our method is based on compressive sensing and we formulate a general framework encompassing continuous- and discrete-time and the evolutionary-game type of dynamical systems as well. For concrete demonstration, we present an example of detecting...
متن کاملProbing Complex Networks from measured Time Series
We propose a method to detect nodes of relative importance, e.g. hubs, in an unknown network based on a set of measured time series. The idea is to construct a matrix characterizing the synchronization probabilities between various pairs of time series and examine the components of the principal eigenvector. We provide a heuristic argument indicating the existence of an approximate one-to-one c...
متن کاملNeural Networks for Chaotic Time Series Prediction
There are many systems that can be described as chaotic: The readings from seismic monitoring stations in mines which describe the rock dynamics, from EKG which describe the fibrillation of a cardiac patient’s heart, and the share prices in financial markets which describe the optimism about the earning potential of companies are examples of observations of deterministic, non−linear, dynamical ...
متن کاملModel Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series
Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indonesian Journal of Electrical Engineering and Computer Science
سال: 2016
ISSN: 2502-4760,2502-4752
DOI: 10.11591/ijeecs.v3.i2.pp350-355